+
Point of view
All features
expanded class COMPARATOR_COLLECTION_SORTER [X_]
Summary
Some algorithms to sort any COLLECTION using an external comparator.
Elements are sorted using the order given by the comparator: large elements at the beginning of the collection, small at the end (increasing order is implemented by class COLLECTION_SORTER).
Note that without setting a comparator (using set_comparator), collections won't get sorted.
How to use this expanded class :
```         local
sorter: COMPARATOR_COLLECTION_SORTER[INTEGER]
array: ARRAY[INTEGER]
do
array := <<1,3,2>>
sorter.set_comparator(agent my_comparator)
sorter.sort(array)
check
sorter.is_sorted(array)
end
...
```
Direct parents
Insert list: ABSTRACT_SORTER
Overview
Creation features
{ANY}
Features
{ANY}
{}
Auxiliary functions
{}
{ANY}
• is_sorted (c: COLLECTION[X_]): BOOLEAN
Is c already sorted ? Uses lte for comparison.
• has (c: COLLECTION[X_], element: X_): BOOLEAN
• index_of (c: COLLECTION[X_], element: X_): INTEGER_32
• add (c: COLLECTION[X_], element: X_)
Add element in collection c keeping the sorted property.
• insert_index (c: COLLECTION[X_], element: X_): INTEGER_32
retrieve the upper index for which gt
• sort (c: COLLECTION[X_])
Sort c using the default most efficient sorting algorithm already implemented.
• quick_sort (c: COLLECTION[X_])
Sort c using the quick sort algorithm.
• von_neuman_sort (c: COLLECTION[X_])
Sort c using the Von Neuman algorithm.
• heap_sort (c: COLLECTION[X_])
Sort c using the heap sort algorithm.
• bubble_sort (c: COLLECTION[X_])
Sort c using the bubble sort algorithm.
{}
set_comparator (a_comparator: FUNCTION[TUPLE[TUPLE 2[X_, X_]]])
effective procedure
{ANY}
comparator: FUNCTION[TUPLE[TUPLE 2[X_, X_]]]
writable attribute
{ANY}
lt (x: X_, y: X_): BOOLEAN
effective function
{}
default_comparator (x: X_, y: X_): BOOLEAN
effective function
{}
default_create
effective procedure
{}
Default creation method.
with_comparator (a_comparator: FUNCTION[TUPLE[TUPLE 2[X_, X_]]])
effective procedure
{}
gt (x: X_, y: X_): BOOLEAN
effective function
{}
lte (x: X_, y: X_): BOOLEAN
effective function
{}
gte (x: X_, y: X_): BOOLEAN
effective function
{}
is_sorted (c: COLLECTION[X_]): BOOLEAN
effective function
{ANY}
Is c already sorted ? Uses lte for comparison.
has (c: COLLECTION[X_], element: X_): BOOLEAN
effective function
{ANY}
index_of (c: COLLECTION[X_], element: X_): INTEGER_32
effective function
{ANY}
add (c: COLLECTION[X_], element: X_)
effective procedure
{ANY}
Add element in collection c keeping the sorted property.
insert_index (c: COLLECTION[X_], element: X_): INTEGER_32
effective function
{ANY}
retrieve the upper index for which gt
sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the default most efficient sorting algorithm already implemented.
quick_sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the quick sort algorithm.
von_neuman_sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the Von Neuman algorithm.
heap_sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the heap sort algorithm.
bubble_sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the bubble sort algorithm.
von_neuman_line (src: COLLECTION[X_], dest: COLLECTION[X_], count: INTEGER_32, d_count: INTEGER_32, lower: INTEGER_32, imax: INTEGER_32)
effective procedure
{}
von_neuman_inner_sort (src: COLLECTION[X_], dest: COLLECTION[X_], sg1: INTEGER_32, count: INTEGER_32, imax: INTEGER_32)
effective procedure
{}
heap_repair (c: COLLECTION[X_], c_lower: INTEGER_32, first: INTEGER_32, last: INTEGER_32)
effective procedure
{}
Repair the heap from the node number first It considers that the last item of c is number last It supposes that children are heaps.
quick_sort_region (c: COLLECTION[X_], left: INTEGER_32, right: INTEGER_32)
effective procedure
{}