+
Point of view
All features
expanded class COLLECTION_SORTER [X_ -> COMPARABLE]
Summary
Some algorithms to sort any COLLECTION[COMPARABLE].
Elements are sorted using increasing order: large elements at the beginning of the collection, small at the end (increasing order is implemented by class COLLECTION_SORTER).
How to use this expanded class :
```         local
sorter: COLLECTION_SORTER[INTEGER]
array: ARRAY[INTEGER]
do
array := <<1,3,2>>
sorter.sort(array)
check
sorter.is_sorted(array)
end
...
```
Direct parents
Insert list: ABSTRACT_SORTER
Overview
Features
{}
Auxiliary functions
{}
{ANY}
• is_sorted (c: COLLECTION[X_]): BOOLEAN
Is c already sorted ? Uses lte for comparison.
• has (c: COLLECTION[X_], element: X_): BOOLEAN
• index_of (c: COLLECTION[X_], element: X_): INTEGER_32
• add (c: COLLECTION[X_], element: X_)
Add element in collection c keeping the sorted property.
• insert_index (c: COLLECTION[X_], element: X_): INTEGER_32
retrieve the upper index for which gt
• sort (c: COLLECTION[X_])
Sort c using the default most efficient sorting algorithm already implemented.
• quick_sort (c: COLLECTION[X_])
Sort c using the quick sort algorithm.
• von_neuman_sort (c: COLLECTION[X_])
Sort c using the Von Neuman algorithm.
• heap_sort (c: COLLECTION[X_])
Sort c using the heap sort algorithm.
• bubble_sort (c: COLLECTION[X_])
Sort c using the bubble sort algorithm.
{}
lt (x: X_, y: X_): BOOLEAN
effective function
{}
gt (x: X_, y: X_): BOOLEAN
effective function
{}
lte (x: X_, y: X_): BOOLEAN
effective function
{}
gte (x: X_, y: X_): BOOLEAN
effective function
{}
is_sorted (c: COLLECTION[X_]): BOOLEAN
effective function
{ANY}
Is c already sorted ? Uses lte for comparison.
require
• c /= Void
ensure
• c.is_equal(old c.twin)
has (c: COLLECTION[X_], element: X_): BOOLEAN
effective function
{ANY}
require
ensure
• Result = c.has(element)
index_of (c: COLLECTION[X_], element: X_): INTEGER_32
effective function
{ANY}
require
ensure
• not c.is_empty implies c.valid_index(Result)
• c.has(element) implies c.item(Result).is_equal(element)
add (c: COLLECTION[X_], element: X_)
effective procedure
{ANY}
Add element in collection c keeping the sorted property.
require
ensure
insert_index (c: COLLECTION[X_], element: X_): INTEGER_32
effective function
{ANY}
retrieve the upper index for which gt
require
ensure
• c.valid_index(Result) implies gt(c.item(Result), element)
• c.valid_index(Result - 1) implies lte(c.item(Result - 1), element)
• Result.in_range(c.lower, c.upper + 1)
sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the default most efficient sorting algorithm already implemented.
require
• c /= Void
ensure
quick_sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the quick sort algorithm.
require
• c /= Void
ensure
von_neuman_sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the Von Neuman algorithm.
This algorithm needs to create a second collection. Uses infix "lte" for comparison.
require
• c /= Void
ensure
heap_sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the heap sort algorithm.
require
• c /= Void
ensure
bubble_sort (c: COLLECTION[X_])
effective procedure
{ANY}
Sort c using the bubble sort algorithm.
Uses infix "<" for comparison.
require
• c /= Void
ensure
von_neuman_line (src: COLLECTION[X_], dest: COLLECTION[X_], count: INTEGER_32, d_count: INTEGER_32, lower: INTEGER_32, imax: INTEGER_32)
effective procedure
{}
require
• src /= dest
• src.lower = dest.lower
• src.upper = dest.upper
• count >= 1
• d_count = count * 2
• lower = src.lower
• imax = src.upper + 1
ensure
• d_count >= dest.count implies is_sorted(dest)
von_neuman_inner_sort (src: COLLECTION[X_], dest: COLLECTION[X_], sg1: INTEGER_32, count: INTEGER_32, imax: INTEGER_32)
effective procedure
{}
require
• src.valid_index(sg1)
heap_repair (c: COLLECTION[X_], c_lower: INTEGER_32, first: INTEGER_32, last: INTEGER_32)
effective procedure
{}
Repair the heap from the node number first It considers that the last item of c is number last It supposes that children are heaps.
require
• c /= Void
• c.lower = c_lower
• c_lower <= first
• last <= c.upper
quick_sort_region (c: COLLECTION[X_], left: INTEGER_32, right: INTEGER_32)
effective procedure
{}